
SUBMITTED TO

TRINITY INTERNATIONAL COLLEGE

Department of Computer Science and Information Technology

Dillibazar Height, Kathmandu, Nepal

May 2023

Tribhuvan University

Institute of Science and Technology

MODELLING MORPHOGENESIS IN 3D: NEURAL

CELLULAR AUTOMATA

A FINAL YEAR PROJECT SUBMISSION IN

PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY

UNDER THE SUPERVISON OF

Sumanta Silwal

Lecturer

SUBMITTED BY

Aaditya Jha, 21138/075

Srija Uprety, 21178/075

Shreeyesh Neupane, 21177/075

SUBMITTED TO

TRINITY INTERNATIONAL COLLEGE

Department of Computer Science and Information Technology

Dillibazar Height, Kathmandu, Nepal

May 2023

Tribhuvan University

Institute of Science and Technology

MODELLING MORPHOGENESIS IN 3D: NEURAL

CELLULAR AUTOMATA

A FINAL YEAR PROJECT SUBMISSION IN

PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY

UNDER THE SUPERVISON OF

Sumanta Silwal

Lecturer

SUBMITTED BY

Aaditya Jha, 21138/075

Srija Uprety, 21178/075

Shreeyesh Neupane, 21177/075

iii

DECLARATION

A project entitled “MODELLING MORPHOGENESIS IN 3D:NEURAL CELLULAR

AUTOMATA” is being submitted to the Department of Computer Science and Information

Technology, Trinity International College, Dillibazar, Kathmandu, Nepal for the fulfilment

of the seventh semester under the supervision of Mr. Sumanta Silwal.

This project is original and has not been submitted earlier in part or full in this or any other

form to any university or institute, here or elsewhere, for the award of any degree.

BY

Aaditya Jha, 21138/075

Srija Uprety, 21178/075

Shreeyesh Neupane, 21177/075

iv

RECOMMENDATION

This is to recommend that Aaditya Jha, Srija Uprety and Shreeyesh Neupane have carried

out research titled “MODELLING MORPHOGENESIS IN 3D:NEURAL CELLULAR

AUTOMATA” for the fulfilment of the seventh semester in Bachelor's degree of Computer

Science and Information Technology under Tribhuvan University under my supervision.

To my knowledge, this work has not been submitted for any other degree.

They have fulfilled all the requirements laid down by the Trinity International College

Department of Computer Science and Information Technology, Dillibazar, Kathmandu,

Nepal.

Sumanta Silwal

Project Supervisor,

Department of Computer Science and Information Technology,

Trinity International College

Dillibazar, Kathmandu, Nepal

v

17th April 2023

LETTER OF APPROVAL

On the recommendation of Mr.Sumanta Silwal, this Project Report submitted by

Aaditya Jha, Srija Uprety and Shreeyesh Neupane entitled “MODELLING

MORPHOGENESIS IN 3D:NEURAL CELLULAR AUTOMATA” in partial

fulfilment of the requirement for the award of the bachelor’s degree in Computer

Science and Informational Technology is a bona fide record of the work carried out

under our guidance and supervision at Trinity International College, Kathmandu,

Nepal.

EVALUATION COMMITTEE

Satya Bahadur Maharjan Sumanta Silwal

Program Coordinator, Project Supervisor,

Department of Computer Science Trinity International College,

Trinity International College, Dillibazar Height, Kathmandu,Nepal

Dillibazar Height, Kathmandu, Nepal

External Examiner

Date:

vi

ACKNOWLEDGEMENT

We would like to express our heartfelt gratitude to everyone who helped us throughout this

project. First and foremost, we would like to thank our program coordinator, Mr. Satya

Bahadur Maharjan, for his guidance, expertise, and patience. His insights and feedback

have been invaluable in shaping this project documentation.

We express our sincere gratitude to Mr. Sumanta Silwal, Project Supervise, for his

valuable feedback and guidance throught the project.

We would also express our gratitude to Mr. Abishek Dewan, Assistant Program

Coordinator, along with the entire staff of the Department of Computer Science and

Information Technology for their invaluable support and cooperation in this project. Their

willingness to extend their assistance whenever we needed it ensured that the project ran

smoothly.

Our friends and family deserve a special mention for their encouragement, love, and

support. Their unwavering support helped us stay motivated throughout the project.

Aaditya Jha, 21138/075

Srija Uprety, 21178/075

Shreeyesh Neupane, 21177/075

vii

ABSTRACT

The use of Neural Cellular Automata (NCAs) has been proven useful in simulating the

morphogenetic process. NCAs has found its application primarily in the 2D domain,

however, this project expands the use of NCAs to the 3D domain by incorporating 3D

convolutions into the neural network architecture. This would enable the simulation of

complex 3D structures and spatial dependencies in all three dimensions. The project create

a CA model that defines global coordination out of local level interactions. The research

findings highlight two significant contributions, namely, an expansion of NCA to 3D

voxels and the development of a cellular automation technique for producing voxel

structures with different levels of complexity. The project explores multiple aspects,

including the structural decay of the system after running for additional iterations beyond

the training phase. It also showcases the regeneration property of the system. Additionally,

the training behavior of the model was analyzed by varying the number of channels in

different datasets.

Keywords: Convolutional Neural Network Neural Cellular Automata, voxels,

morphogenesis, Stochastic update, activation function, gradient optimization

viii

TABLE OF CONTENT

DECLARATION .. iii

RECOMMENDATION .. iv

LETTER OF APPROVAL ... v

ACKNOWLEDGEMENT .. vi

ABSTRACT .. vii

LIST OF ACRONYMS AND ABBREVIATIONS .. x

LIST OF TABLES .. xii

CHAPTER 1 ... 1

INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Problem Statement... 2

1.3 Objective ... 2

1.4 Scope & Limitations: ... 2

1.5 Developmental Methodology ... 3

1.6 Report Organization: ... 3

CHAPTER 2 ... 5

BACKGROUND STUDY AND LITERATURE REVIEW ... 5

2.1 Background Study .. 5

2.2 Literature Review ... 5

CHAPTER 3 ... 8

SYSTEM ANALYSIS ... 8

3.1 System Analysis ... 8

3.1.1 Requirement analysis ... 8

3.1.1.i Functional requirement: .. 8

3.1.1.ii Non-functional requirement: .. 9

3.1.2 Feasibility analysis ... 10

3.1.2.i Technical feasibility .. 10

3.1.2.ii Schedule feasibility .. 10

3.1.2.ii Economic feasibility .. 10

3.1.3 Analysis ... 10

3.1.3.i Flow diagram .. 11

ix

CHAPTER 4 .. 122

SYSTEM DESIGN .. 12

4.1 Design ... 122

4.1.1 Sequence diagram ... 122

4.1.2 Activity diagram ... 133

4.2 Algorithm Details .. 144

IMPLEMENTATION AND TESTING .. 188

5.1 Implementation ... 188

5.1.1 Tools used .. 188

5.2.1 Testing cases for unit testing ... 188

5.2.2 Testing case for integration testing ... 19

5.2.3 Loss Analysis ... 201

5.3 Result Analysis ... 222

5.3.1 Structure generated over time ... 222

5.3.2 Structural decay over time ... 233

5.3.3 Regeneration ... 244

CHAPTER 6 .. 255

CONCLUSION AND FUTURE RECOMMENDATIONS ... 255

6.1 Conclusion .. 255

6.2 Future Recommendation .. 255

REFERENCES ... 266

APPENDIX I .. 288

APPENDIX II ... 29

x

LIST OF ACRONYMS AND ABBREVIATIONS

3D Three dimension

CA Cellular Automata

CNN Convolutional Neural Network

GNCA Growing Neural Cellular Automata

NCA Neural Cellular Automata

xi

LIST OF FIGURES

Figure 1 Use Case Diagram of the system… ... 8

Figure 2 Gantt chart… ..10

Figure 3 Flow Diagram of system… ... 11

Figure 4 Sequence Diagram… .. 12

Figure 5 Activity Diagram .. 13

Figure 6 Defining Target ... 14

Figure 7 Layers of voxel… .. 15

Figure 8 Seed value… ... 15

Figure 9 Single update step of the model… .. 16

Figure 10 Training scheme for learning target pattern… .. 16

Figure 11 Loss plot of different entities… .. 22

Figure 12 Structural generation over time ... 22

Figure 13 Loss plot after running CA for 200 iteration without the instability

issue .. 23

Figure 14 Loss plot for 1000 iterations after mitigating the instability issue 23

Figure 15: Structural generation over time ... 24

xii

LIST OF TABLES

Table 1: Table of Unit Testing .. 19

Table 2: Table of Integration Testing .. 19

Table 3: List of Datasets ... 20

Table 4: MSE Loss Calculation for different channels… ... 21

1

1.1 Introduction

CHAPTER 1

INTRODUCTION

Morphogenesis is the process through which an organism develops its shape, whereby cells

communicate with one another to determine organ and body structure [2]. The creation of

tissues and organs from a single cell, has been of interest in regenerative

medicine[15][16].However, the process of emergence of complex outcomes from simple rules

and feedback loops in morphogenesis is not yet fully understood, and the biggest mystery in

this field is how cell collectives know when to stop building. A new area of research at the

intersection of developmental biology and computer science involves discovering subroutines

and mapping out developmental logic to help understand this puzzle. Cellular Automata (CA)

is one approach used to understand morphogenesis by emulating local interactions of cells.

Neural Cellular Automata (NCA) is a more sophisticated version of CA that uses neural

networks to replace functions that equations cannot encapsulate.

The latest advancements in Neural Cellular Automata (NCAs) have primarily focused on 2D

techniques, which involve generating target images from a single pixel [1] or creating endlessly

expanding 2D textures [14]. Recent progress has also demonstrated use of NCA for growing

Minecraft Entities and regenerating functional machines [7]. However, this approach limits the

type of cell into fixed classes of minecraft block types. Our study suggests expanding NCAs

into the 3D domain and allowing the cell to range into any of the RGB values by incorporating

3D convolutions into the neural network architecture.

Cellular automata (CA) are mathematical models that are used to simulate the behavior of

systems. They consist of a grid of cells that are updated iteratively according to a set of rules.

Each cell can have a certain number of possible states, which are typically represented by a set

of discrete values. The state of a cell at a particular time step is determined by the states of the

cells in its immediate neighborhood at the previous time step. Despite their simplicity, CAs can

exhibit complex and interesting behaviors. Although they define a simple set of rules that

determine how cells in a grid evolve over time, they can be used to simulate a wide range of

phenomena, including patterns of growth, the spread of diseases, and the behavior of complex

systems. One of the key features of cellular automata is that they can produce complex and

seemingly intelligent behavior from a very simple set of rules. This makes them a useful tool

for studying the principles of self-organization and emergent behavior in complex systems.

2

1.2 Problem Statement

Modelling biological morphogenesis in computation can allow us to gain a better

understanding of how the shape and form of an organism develops. Such models both enhance

our understanding of biology and translate these discoveries into improved robotics and

computational technology. Models that can define global coordination out of local level

interactions can serve as a valuable tool for biologists, helping to deepen their understanding

of morphogenesis and its underlying mechanisms. Additionally, by using these models to study

the development of organisms, it may be possible to create more advanced computational

technology that can replicate the complexity and functionality of natural systems.

1.3 Objective

The objectives are:

1. To develop an extension of the methodology described in the paper “Growing Neural

Cellular Automata” to facilitate complex structure generation in three dimensions

2. To simulate the growth and development of multicellular structure starting from a

single cell.

1.4 Scope & Limitations:

The model developed in this project aims to simulate the growth and development of

multicellular structure from a single seed cell using Cellular Automata and Neural Cellular

Automata models. By implementing the power of Convolutional Neural Networks, the model

can capture how the shape and structure of a system is specified at a cellular level. The project

could have applications in robotics, medicine, and biotechnology.

The developed model may not be able to accurately capture all the complexities of the

biological morphogenetic process, as this process involves a multitude of factors that interact

in a highly intricate and dynamic way. There may be limitations in the computational resources

required to implement the model, particularly if the size of the grid or the number of iterations

required is large. As with any simulation or model, the accuracy of the results is dependent on

the quality and completeness of the input data and the assumptions made in the model design.

There may be challenges in verifying the accuracy of the model's predictions, particularly in

cases where there is limited experimental data available for comparison.

3

1.5 Developmental Methodology

The developmental methodology for this project involves conducting a thorough literature

review on Neural Cellular Automata (NCA) and its applications, designing a 3D voxel-based

extension of the methodology, collecting and preparing relevant data, implementing the model

using deep learning frameworks, evaluating and validating the model's performance, iteratively

refining the model based on feedback and experimentation, and documenting the entire

development process in a comprehensive report. While not strictly adhering to Agile principles,

the methodology emphasizes a systematic and structured approach to achieve the objectives of

the project.

1.6 Report Organization:

The report is organized as follows:

Chapter 1 introduces the concept of cellular automata and their ability to simulate complex

behavior. It focuses on the use of cellular automata to model biological morphogenesis, and

proposes the use of Neural Cellular Automata to achieve this. The chapter outlines the problem

statement, objectives, scope and limitations of the project, and highlights its potential

applications in various fields. Overall, Chapter 1 sets the foundation for the rest of the report

by providing background information and outlining the goals of the project.

Chapter 2 of the report contains a background study and literature review on the topic of using

neural cellular automata (NCA) for simulating self-organizing systems, including soft robot

growth and regeneration. The literature review covers various studies on NCAs, including their

application in 3D environments, simulation of morphogenesis, and regenerative capabilities of

soft robots. The chapter provides a summary of the main findings and contributions of each

study.

Chapter 3 of the report is dedicated to system analysis. This section covers several aspects such

as requirement analysis, feasibility analysis, and project analysis. The requirement analysis

includes both functional and non-functional requirements, while the feasibility analysis

examines technical and schedule feasibility. In addition, the analysis section presents a flow

diagram that illustrates the project's workflow. Specifically, a flow diagram depicts the step-

by-step process of the project, providing a clear understanding of how the project works.

4

Chapter 4 of this report focuses on the design aspect of the project. It begins with a sequence

diagram that outlines the sequence of interactions between the system and its users. Following

that, an activity diagram is provided to illustrate the various activities that occur within the

system. Additionally, this chapter includes a detailed description of the algorithms used in the

project.

Chapter 5 is all about implementation and testing. This chapter includes the tools used for

building the system i.e the programming language as well as the test cases for unit and

integration testing performed for the system are included within this chapter.

Chapter 6 provides us with the conclusion and future recommendations.

5

CHAPTER 2

BACKGROUND STUDY AND LITERATURE REVIEW

2.1 Background Study

The concept of cellular automata was first introduced by John von Neumann in the 1940s as a

method to model self-replicating machines [10]. In his book "Theory of Self-Reproducing

Automata," von Neumann presented a cellular automaton that had 29 potential states for each

cell and featured a "von Neumann" neighborhood, in which every cell was linked to the cells

above, below, left, and right. He demonstrated that this type of cellular automaton displays

dynamics that are comparable to the biological mechanisms associated with self-reproduction

and evolution [11].

Several other cellular automata were created, including one by Edgar Frank Codd in 1968,

which varied in the number of potential states, connected neighbors, and algorithms employed

to determine new states [12]. Later, in the 1970s, Stephen Wolfram introduced the idea of using

cellular automata to model complex systems and patterns[3]. However, it was not until the

1990s that neural networks were combined with cellular automata to create GNCA.

The first GNCA model was developed by Hiroki Sayama in 2007, who used it to simulate plant

growth. Since then, several variations of GNCA have been proposed, including 2D and 3D

models, and models that incorporate genetic algorithms and reinforcement learning [13].

2.2 Literature Review

An article “Growing Neural Cellular Automata” describes an approach for using neural cellular

automata (NCAs) [1]. The author of this study performs three experiments where the model

types are growing, persistent, and regenerating. In the Growing experiment, the authors are

training a neural cellular automaton (CA) to achieve a target image after a random number of

updates.

The authors of this study trained their growing models to generate patterns, but found that they

did not have the ability to maintain their structure over time. Some patterns would explode or

decay, while others were almost stable or even able to regenerate parts. Similarly in the

persistent experiment, the authors trained their models to generate patterns that persist for a

prolonged period of time using a sample pool strategy. They found that these persistent models

6

often developed regenerative capabilities without being explicitly instructed to do so. Likewise

in the regenerating experiment, the authors subjected their regenerating models to pattern

damages during training, which resulted in the models developing much stronger regenerative

capabilities, particularly in the central area.

In a study by Sudhakaran et al. extension of NCAs is proposed to the 3D domain, using 3D

convolutions in the neural network architecture [7]. They apply this approach to the simulation

of structures in the video game Minecraft where Minecraft structure is represented as a 3D grid

of cells, each with a state vector containing information about the type of block in the cell,

whether the cell is "alive" or "dead," and additional "hidden" information carried through steps

of the NCA process. The block type is represented as a one-hot vector, and cells are considered

"alive" if they or their neighbors have an alpha value greater than 0.1. The authors of this study

evaluated the ability of their Neural Cellular Automata (NCA) to regenerate structures in

Minecraft by measuring the ratio of regenerated blocks after the structure was cut in half. They

found that an NCA trained for regeneration was able to regrow 99% of the blocks in a

Caterpillar functional machine, compared to only 30% for an NCA not trained for regeneration.

This work suggests that NCAs may have potential as a tool for simulating complex, self-

organizing systems in 3D environments.

In this study, Mordvintsev et al. analyses the ability of the Neural Cellular Automata (NCA)

model to simulate morphogenesis, or the local interactions between cells that lead to the

development of multicellular organisms [9]. They argue that the original Growing NCA model

has a limitation in that it is not invariant to rotation, meaning that it cannot produce differently

oriented instances of the same pattern on the same grid. To address this limitation, the authors

propose a modified Isotropic NCA (IsoNCA) model that is invariant to rotation. They

demonstrate that the IsoNCA model can be trained to grow accurate asymmetrical patterns

using either structured seeds or a rotation-reflection invariant training objective. The model

was improved in a way that it can now extrapolate to unseen orientations. These findings may

help to improve the ability of NCA models to simulate morphogenetic processes.

In another study by Horbie et al. an approach is prepared for simulated soft robots to regenerate

damaged parts of their morphology using a Neural Cellular Automata (NCA) [8]. This

approach relies on local cell interactions and allows the simulated soft robots to partially

regenerate their original shape and regain some of their locomotion abilities. This genetic

7

algorithm is used to train deep neural networks and uses truncation selection, in which the top

T individuals from the current generation become the parents for the next generation. To create

the offspring for the next generation, parents are selected randomly and their weight vectors

(genotypes) are mutated by adding Gaussian noise. The authors believe that this work takes a

step towards giving artificial systems regenerative capacities and could potentially allow for

more robust operations in a variety of situations and environments.

8

3.1 System Analysis

CHAPTER 3

SYSTEM ANALYSIS

System analysis is the process of studying a system to identify its components, functions, and

relationships in order to improve its efficiency, effectiveness, and overall performance.

3.1.1 Requirement analysis

Requirement analysis is the process of thoroughly understanding the objectives and

expectations of a project or system, gathering information, and identifying the necessary

features and functionalities to meet those objectives.

3.1.1.i Functional requirement:

The functional requirement of the system include:

● An actor and a 3D NCA system is present.

● User inputs data then validates, trains and visualizes the model.

● The 3D NCA system trains the model.

Figure 1: Use Case Diagram of system

9

The "3-D GNCA System" allows users to interact with a Growing Neural Cellular Automata

(GNCA) model. Users can input data, train the GNCA model, and visualize the output. The

system consists of two actors: User and System.

Actors:

User: Interacts with the 3-D GNCA System.

System: Executes the GNCA model and handles processing.

Use Cases:

Input Data:

 User provides input data for processing.

 Includes: Input Parameter, Validation of Input.

 Extends: Display Input Error (for invalid input).

Train GNCA Model:

 User trains the GNCA model using the provided input data.

Visualize Output:

 User views the generated output of the GNCA model.

 Includes: Generate Target, Generate Structure, and Generate Video.

3.1.1. ii Non-functional requirement:

The non-functional requirement of the system may include:

● Performance: The model should be able to generate complex 3D structures efficiently

and within a reasonable amount of time. It should be able to handle different sizes of

data and run smoothly on the target hardware.

● Usability: The user interface should be easy to use and understand, with clear

instructions and feedback provided at all times. It should also be intuitive and

responsive, allowing users to interact with the system in a natural and efficient manner.

● Reliability: The system should be reliable and stable, with minimal errors. It should be

able to recover from errors and failures quickly and gracefully, without compromising

the integrity of the data or the overall performance of the system.

10

3.1.2 Feasibility analysis

3.1.2.i Technical feasibility

This project is carried out with the help of a free version of Google colab and in visual studio

code if needed to run the code locally.

3.1.2.ii Schedule feasibility

With the necessary resources including hardware, software, and personnel, the project can be

successfully completed within a three-month timeframe. A Gantt chart in figure below

provides a tentative schedule outlining the project's timeline.

Figure 2: Gantt chart

3.1.2.iii Economic feasibility

This project is flexible in terms of economic expense. All the software tools used for

developing the project are free. The project was developed with the help of the personal

devices of the team members and no other computational infrastructure was bought, rented or

used throught the project.

3.1.3 Analysis

Analysis in a flow diagram for a software project involves examining and understanding the

system's requirements, components, and interactions. It helps visualize the flow of

information and identify the inputs, processes, and outputs of the software system. This

11

analysis aids in the design and development process by providing a comprehensive

understanding of the system's functionality.

3.1.3.i Flow diagram

The flow diagram represents a software process consisting of data loading, seed definition,

target specification, iterative training, and model evaluation. It begins by loading data,

defining a seed, and specifying the target. The system then enters a training loop, generating

an output model. The model is evaluated for satisfaction, and if satisfactory, the system

continues the training loop; otherwise, the process ends.

Figure 3: Flow Diagram of system

12

4.1 Design

4.1.1 Sequence diagram

CHAPTER 4

SYSTEM DESIGN

The sequence diagram of the system describes the sequence of activities that occurs between

the server system, client system, and the user. In the sequence diagram below the User actor

initiates the process by uploading a CSV file containing the information about the 3D model.

The client receives the file, and validates the file with the server, and then contacts the Server

actor to create the 3D model. Once the Server has created the model, it sends it back to the

Website, which then allows the User to either save or visualize the model.

Figure 4: Sequence Diagram

13

4.1.2 Activity diagram

An activity diagram is a graphical representation of a system's workflow, which portrays the

sequence of activities that take place in the system. In the given scenario, the activity diagram

depicts the workflow of a system that involves an actor and a 3D NCA system. The first activity

is user input, where the actor enters the necessary data into the system. The second activity is

validation, where the system checks the user input to ensure that it meets the required standards.

The third activity is training, where the system trains the model using the validated data. The

fourth activity is visualization, where the system provides a visual representation of the data

once the model is trained and the fifth activity in the diagram involves generating a video output

by the system that depicts a 3D object.

Figure 5: Activity Diagram

14

4.2 Algorithm Details

Defining Target Object

The process starts by representing the 3d object in a format suitable for convolutional operation.

Prior to training the model to learn the update rule defining the global structure of the 3d object,

the object is represented as a stack of RGBA values. Every layer in the stack holds information

about the 3d object for a particular z coordinate, where the layer also represents the

corresponding x and y coordinates of the voxel along with the RGB value. The data is finally

presented as a 4d array for further processing. Subsequently, the resulting matrix can be

visualized using the matplotlib library.

Figure 6: Defining target

The target is defined as a 4D numpy array, where the first three dimensions represent the x, y,

and z coordinates of a 3D object, and the last dimension represents the RGB and alive channel.

The RGB values for each voxel are normalized to a range of 0 to 1 by dividing them by 255.

15

Figure 7: Layers of voxel

Define seed

After defining the target, an initial seed must be established for the structure to grow from. This

seed comprises of a single cube situated at the center of the 3d space.

Figure 8: Seed value

16

Model Architecture

The 2D convolution used in [1] is replaced with a 3D convolution to allow for cell awareness

of its neighbors in the 3D space. In contrast to [1], a learnable perception network akin to [7]

is used rather than a static perception network with a Sobel filter. The dynamic perception

network is realized as a 3D convolutional layer with a kernel size of 3, a stride of 1, output

channels equal to the cell state channels multiplied by 3, and an activation function of tf.nn.relu.

Similar to [1], a stochastic update approach is adopted, in which the output of the CA is

multiplied by a randomly generated binary matrix with half of its values being 0. Then, the

"alive mask" is applied to the updates, which leverages the interaction with the living channel

mentioned earlier. This is accomplished by multiplying the updates with the results of a

MaxPool layer and a Boolean mask where the value is 1 if it exceeds 0.1 and 0 otherwise.

Figure 9: Single update step of the model

Figure above shows how deep learning is used to learn the set of rules that produce a desired

multicellular pattern.

Training procedure

Figure 10: Training scheme for learning target pattern

17

Using a differentiable update rule, a set of rules can be found through numerical optimization

techniques, such as gradient descent, to produce a desired multicellular pattern in 3D space.

The approach employed in this work is reminiscent of the method outlined in the paper

"Growing Neural Cellular Automata" [1], where the local rules are learned through

reconstruction tasks. Similar to previous studies [1][7], the NCA (Neural Cellular Automata)

endeavors to generate a target entity from a single living cell and optimize the reconstruction

process using supervised learning and a reconstruction loss. Unlike [7], the structure

reconstruction task cannot be treated as a multiclass classification problem since there is no

fixed number of classes to consider.

To compute the loss, the seed value is initialized and the loss function is determined using

mean squared error (MSE). Specifically, the loss is calculated by computing the mean of the

sum of the squared differences between the first 4 channels of the output and the target

structure:

Here n represents the total number of cubes and k represents the channel.

18

CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

Implementation is the part of action to put all the plans into working using different tools and

programming language

5.1.1 Tools used

For the implementation of this project, Python was selected as the primary programming

language. In addition to Python's native functionality, several supporting libraries were utilised

to facilitate the development process. The following libraries were particularly instrumental in

the project's successful completion:

1. Numpy

2. Matplotlib

3. Tensorflow

4. PIL library

5. Moviepy

6. Pickel

7. Gradio

These libraries helped in achieving the desired functionality and allowed for efficient coding

practices.

5.2 Testing

5.2.1 Testing cases for unit testing

The system undergoes white box unit testing to ensure the accuracy and reliability of each

module. During this process, each module is tested independently to verify that its functions

are producing the expected output. This approach allows for a thorough examination of the

system's internal operations and helps to identify any potential errors or inconsistencies. By

conducting white box unit testing, the overall quality and effectiveness of the system can be

enhanced, providing a robust and reliable solution.

19

Table 1: Table of Unit Testing

Module Input Expected Output Observed output Test result

load_file “test_file_3x3x6.csv” [3, 3, 6] [3, 3, 6] Passed

load_file “test_file_3x3x6(1).csv
”

[3,3,6] ValueError:
invalid literal
for int() with
base 10: '6(1)'

Failed

return_Layer
(([[0, 0, 1, 255, 0, 0],

([[0, 0, 0], [0, 0,

([[0, 0, 0], [0, 0,

Passed

[1, 1, 1, 0, 255, 0],

0], [0, 0, 0]]) 0], [0, 0, 0]])

[2, 2, 2, 0, 0, 255]]), 2)

([[0, 0, 0], [0, 0,
0], [0, 0, 0]])

([[0, 0, 0], [0, 0,
0], [0, 0, 0]])

 ([[0, 0, 0], [0, 0, ([[0, 0, 0], [0, 0,

 0], [0, 0, 255]]) 0], [0, 0, 255]])

 ([[0, 0, 0], [0, 0, ([[0, 0, 0], [0, 0,

 0], [0, 0, 1]]) 0], [0, 0, 1]])

define_seed - (1,3,3,6,20) (1,3,3,6,20) Passed

loss_function - 1 1 Passed

5.2.2 Testing case for integration testing

Table 2: Table of Integration Testing

Test Name Unit Test

Objective The objective of integration testing is to
verify that the different modules or
components of the software system,
including input data validation, z-layer
stacking, seed definition, and Mean Squared
Error calculation, are integrated correctly
and working together seamlessly.

Expected Output Unit test successful for checking input data
Unit test successful for stacking up z-layers
Unit test successful for defining seed for 3D
Unit testing successful for Mean Squared
Error

Original Output Integration Testing Successful

20

5.2.3 Loss Analysis:

Dataset

The dataset comprises a CSV file that contains individual voxel coordinates and their

corresponding color values. Each entry in the CSV file consists of six values. The first three

values represent the X, Y, and Z coordinates of the voxel, while the remaining three values

represent the RGB color values, ranging from 0 to 255. Here is an attached image of the 3D

object we are currently working on, along with its associated properties.

Table 3: List of datasets

Entity

No. of
Block

No of full
Block

No. of
Empty
Block

Dimension

Plot

Torus

2166

1400

766

19x6x19

Lizard

6688

443

6245

44x19x8

Spider

8990

1342

7648

29x10x31

Bird

11760

2911

8849

15x28x28

21

The table above shows how different numbers of channels affect the training and loss. We train
the model for 2000 iterations for the CA to generate the target object in 100 update steps.

Table 4: MSE Loss Calculation for different channels

Entity

Training
Iteration

MSE Loss

16 Channels 20 Channels 24 Channels

Torus 2000 0.00178936 0.0016519437 0.0019017322

Bird 2000 0.00246781 0.001897112 0.0011209109

Spider 2000 0.00167612 0.001426785 0.0011232341

Lizard 2000 0.00036459 0.001234467 0.0011235789

The table contains information about the performance of a machine learning model for four

different entities: Torus, Bird, Spider, and Lizard. The model was trained for 2000 iterations

and the Mean Squared Error (MSE) loss was observed for different channel configurations: 16,

20, and 24 channels.

Loss plot of different entities

The plot represents the loss of different entities, specifically the torus, spider, lizard and bird

during a training process. The training consisted of 2000 iterations, with each entity having 16

channels for their 3D representation. The plot visualizes the mean squared error (MSE) for each

entity over 2000 iterations of training.

Fig 11: Loss plot of different entities

22

5.3 Result Analysis

5.3.1 Structure generated over time

The following diagram illustrates the temporal evolution of the structure based on the update

rule that the cellular automaton (CA) model was trained to learn. It demonstrates how the

structure develops and changes over time.

Torus step-10 Torus step-25 Torus step-50 Torus step-100

Spider step-10 Spider step-25 Spider step-50 Spider step-100

Bird step-10 Bird step-25 Bird step-50 Bird step-100

Lizard step-10 Lizard step-25 Lizard step-50 Lizard step-100

Figure 12: Structural generation over time

23

5.3.2 Structural decay over time

In line with the findings of [1], our system encounters instability issues when generating

samples beyond the number of steps it was trained for, this can be seen in the figure below. To

mitigate this problem, we introduce a "sample pool" with a capacity of 10. The pool is

constantly updated with the outputs of each batch, and it starts with a collection of "seed states"

that consist of a single living cell.

Figure 13: Loss plot after running CA for 200 without mitigating the instability issue

Figure 14: Loss plot for 1000 iteration after mitigating the instability issue

24

5.3.3 Regeneration

Step 10 Step 20 Step 40

Step 60 Step 60 cutting the lizard in half Step 70

Step 80 Step 90 Step 100(regenerated tail)

Figure 15: Structural generation over time

The figure 15 demonstrates the regenerative property of the system. At the 60th update step,
the tail of the lizard is intentionally severed, and our cellular automaton (CA) model
successfully regenerates the amputated tail.

25

CHAPTER 6

CONCLUSION AND FUTURE RECOMMENDATIONS

6.1 Conclusion

In conclusion, this project attempts to create a model of morphogenesis using Neural Cellular

Automata (NCAs) in 3D. The goal is to simulate the growth and development of multicellular

organisms starting from a single seed, with the aim of enhancing our understanding of

morphogenesis and its underlying mechanisms. The use of NCAs allows for the simulation of

complex and seemingly intelligent behavior from a simple set of rules, making them a useful

tool for studying self-organization and emergent behavior in complex systems.

6.2 Future Recommendation

For further improvement of the system in the future, following features can be implemented:

● Improve the architecture: The architecture of the model can be improved to achieve

better performance. This can include changing the number of layers, neurons, and

convolutional filters used in the model.

● Dataset expansion: The dataset used to train the NCA model can be expanded to

include voxel with higher resolution. The performance of the current model degrades

with the increase in the model resolution.

● Interactive Interface: The NCA model could be deployed in an interactive interface

for better visualization.

26

REFERENCES

[1] A. Mordvintsev, E. Randazzo, E. Niklasson, and M. Levin, “Growing Neural Cellular

Automata,” Distill, vol. 5, no. 2, p. e23, Feb. 2020, doi: 10.23915/distill.00023.

[2] “Morphogenesis,” www.bionity.com.

https://www.bionity.com/en/encyclopedia/Morphogenesis.html (accessed Jan. 04, 2023).

[3] S. Wolfram, A new kind of science. Champaign, Il: Wolfram Media, 2002.

[4] B. W.-C. Chan, “Lenia: Biology of Artificial Life,” Complex Systems, vol. 28, no. 3, pp.

251–286, Oct. 2019, doi: 10.25088/complex systems.28.3.251.

[5] W. Gilpin, “Cellular automata as convolutional neural networks,” Physical Review E, vol.

100, no. 3, Sep. 2019, doi: 10.1103/physreve.100.032402.

[6] W. Elmenreich and I. Fehérvári, “Evolving Self-organizing Cellular Automata Based on

Neural Network Genotypes,” Self-Organizing Systems, pp. 16–25, 2011, doi: 10.1007/978-

3-642-19167-1_2.

[7] S. Sudhakaran, D. Grbic, S. Li, A. Katona, E. Najarro, C. Glanois, and S. Risi, "Growing

3D Artefacts and Functional Machines with Neural Cellular Automata," arXiv preprint

arXiv:2103.08737, Jun. 2021. , Accessed: Jan. 05, 2023. [Online]. Available:

https://arxiv.org/abs/2103.08737

[8] K. Horibe, K. Walker, and S. Risi, “Regenerating Soft Robots through Neural Cellular

Automata.” Accessed: Jan. 05, 2023. [Online]. Available:

https://arxiv.org/pdf/2102.02579.pdf

[9] A. Mordvintsev, E. Randazzo, and C. Fouts, “Growing Isotropic Neural Cellular

Automata,” arXiv:2205.01681 [cs, q-bio], Jun. 2022, Accessed: Jan. 05, 2023. [Online].

Available: https://arxiv.org/abs/2205.01681

[10] The Embryo Project Encyclopedia (no date) John von Neumann's Cellular Automata | The

Embryo Project Encyclopedia. Available at: https://embryo.asu.edu/pages/john-von-

neumanns-cellular-automata (Accessed: March 14, 2023).

27

[11] Theory of self-reproducing automata : Von Neumann, John, 1903-1957 : Free download,

Borrow, and streaming (1966) Internet Archive. Urbana, University of Illinois Press.

Available at: https://archive.org/details/theoryofselfrepr00vonn_0 (Accessed: March 14,

2023).

[12] Codd, E.F. (1968) Cellular automata (1968 edition), Open Library. Academic Press.

Available at: https://openlibrary.org/books/OL5615248M/Cellular_automata (Accessed:

March 14, 2023).

[13] Theory of self-reproducing automata : Von Neumann, John, 1903-1957 : Free download,

Borrow, and streaming (1966) Internet Archive. Urbana, University of Illinois Press.

Available at: https://archive.org/details/theoryofselfrepr00vonn_0 (Accessed: March 14,

2023).

[14] E. Niklasson, A. Mordvintsev, E. Randazzo, and M. Levin, “Self-Organising Textures,”

Distill, vol. 6, no. 2, Feb. 2021, doi: https://doi.org/10.23915/distill.00027.003.

[15] S. D. Joshi and L. A. Davidson, “Epithelial machines of morphogenesis and their potential

application in organ assembly and tissue engineering,” Biomechanics and Modeling in

Mechanobiology, vol. 11, no. 8, pp. 1109–1121, Aug. 2012, doi:

https://doi.org/10.1007/s10237-012-0423-6.

[16] M. A. Kinney, T. A. Hookway, Y. Wang, and T. C. McDevitt, “Engineering three-

dimensional stem cell morphogenesis for the development of tissue models and scalable

regenerative therapeutics,” Annals of Biomedical Engineering, vol. 42, no. 2, pp. 352–367,

2013.

28

APPENDIX I

29

APPENDIX II

#@title Choose and load data from url

import pandas as pd

import numpy as np

import io

import requests

MODEL_3D = "lizard_44x19x8.csv" #@param ["torus_19x6x19.csv",

"lizard_44x19x8.csv", "bird_15x28x28.csv", "spider_29x10x31.csv",

"knight_18x8x15.csv"]

entity=MODEL_3D.split('_')[0]

url=urls[entity]

df = pd.read_csv(url,encoding= 'unicode_escape')

arr = np.array(df)

file_name = ((url.split('/')[-1]).split('?')[0]).split('.')[0]

dimension = [int(x) for x in file_name.split("_")[-1].split("x")]

max_dim=int(np.max(dimension))

print('Data loading successful')

print('File name:', file_name)

print('Data shape:', arr.shape)

SIZE_X=dimension[0]

SIZE_Y=dimension[1]

SIZE_Z=dimension[2]

def return_zLayer(arr, z):

"""Returns a single layer of voxels"""

z_slice = np.array([arr[arr[:, 2] == z]])

Zxy = z_slice[0][...,:6].astype(int)

R = np.zeros((SIZE_X, SIZE_Y))

G = np.zeros((SIZE_X, SIZE_Y))

B = np.zeros((SIZE_X, SIZE_Y))

Z = np.zeros((SIZE_X, SIZE_Y))

for i in Zxy:

Z[i[0]][i[1]] = 1

Load Data

Function to return single layer of voxel

def stack_layers(arr):

"""Stacks up all the layers of voxels"""

r_stack, g_stack, b_stack, z_stack = return_zLayer(arr, 0)

for i in range(1, SIZE_Z):

r, g, b, a = return_zLayer(arr, i)

r_stack = np.dstack((r_stack, r))

g_stack = np.dstack((g_stack, g))

b_stack = np.dstack((b_stack, b))

z_stack = np.dstack((z_stack, a))

return r_stack, g_stack, b_stack, z_stack

#Defining target

target=np.stack((r_stack/255,g_stack/255,b_stack/255,z_stack),axis=-1)

#Plotting the target

fig_t = plot_target(r_stack, g_stack, b_stack, z_stack, max_dim, SIZE_X,

SIZE_Y, SIZE_Z, flag, FACE_COLOR)

def create_seed(channels, size_x, size_y, size_z):

""" This function creates a seed array """

seed = np.zeros([1, size_x, size_y, size_z, channels], np.float32)

seed[:, size_x//2, size_y//2, size_z//2, :4] = 1

print("Shape of seed:")

print(seed.shape)

return seed

def get_living_mask(x):

"""Returns a mask that identifies living cells in the CA grid"""

alpha = x[..., 3:4]

return tf.cast(tf.nn.max_pool3d(alpha,3,1,'SAME') > 0.1,tf.float32)

Function to stack up layers

Defining and plotting the target

Function to create seed

Function to return alive mask

R[i[0]][i[1]] = i[3]

G[i[0]][i[1]] = i[4]

B[i[0]][i[1]] = i[5]

return R, G, B, Z

class CA(tf.Module):

"""Defines the 3D Cellular Automaton model"""

def init (self):

self.model=tf.keras.Sequential([

Conv3D(

filters=Channel*3,

kernel_size=3,

padding='same',

input_shape=(SIZE_X,SIZE_Y,SIZE_Z,Channel),

activation=tf.nn.relu

),

Conv3D(

filters=Channel,

kernel_size=3,

padding='same',

kernel_initializer=tf.zeros),

])

@tf.function

def call (self,x): """Runs a forward pass of the model"""

alive_mask= get_living_mask(x)

update_mask = tf.floor(tf.random.uniform(x.shape) + 0.5)

x= x+self.model(x)*update_mask

x *= alive_mask

return x

def training_step(seed, target, ca, BATCH_SIZE, mse_loss, trainer, flag):

"""Performs a single training step"""

with tf.GradientTape() as g:

Repeat the seed BATCH_SIZE times to create a batch of seeds

x = tf.repeat(seed, BATCH_SIZE, 0)

N = 100 # Number of iterations

for i in range(N):

x = ca(x)

if flag:

Compute loss for RGBA channels

loss = mse_loss(x[..., :4], tf.cast(target, tf.float32))

else:

Compute loss for only alive channel

loss = mse_loss(x[..., :4][...,3],

tf.cast(target[...,3], tf.float32))

Compute gradients and update the model parameters

CA model

Training step

Define the training loop

def train_model(seed, target, ca, training_iterations, batch_size, flag):

"""Trains the 3D Cellular Automaton model"""

Create the optimizer, loss function, and learning rate schedule

lr_schedule = create_lr_schedule()

optimizer = create_optimizer(lr_schedule)

mse_loss = create_mse_loss()

Track the loss over time

loss_log = []

for i in range(int(training_iterations)):

Take a training step

loss, x = training_step(

seed, target, ca,

int(batch_size),

mse_loss,optimizer, flag)

Append the loss to the log

loss_log.append(loss.numpy())

Print the loss every 20 iterations

if i % 20 == 0:

print(i, loss.numpy(), flush=True)

Create a plot of the loss over time

fig_l, ax = plt.subplots()

ax.plot(loss_log, '.', alpha=0.3)

ax.set_yscale('log')

ax.set_title('Loss over Training Iterations')

ax.set_xlabel('Training Iterations')

ax.set_ylabel('Loss')

plt.close(fig_l)

return fig_l

Loss function

params = ca.trainable_variables

grads = g.gradient(loss, params)

grads = [g / (tf.norm(g) + 1e-8) for g in grads]

trainer.apply_gradients(zip(grads, params))

return loss, x

Structural decay mitigation
#@title Training loop with pooling {vertical-output:true}

#defining optimizer

lr=tf.keras.optimizers.schedules.PiecewiseConstantDecay([1000],[1e-3,3e-4])

trainer=tf.optimizers.Adam(lr)

loss_log=[]

mse_loss = tf.keras.losses.MeanSquaredError()

#creating pool

pool=np.repeat(seed,BATCH_SIZE,0)

@tf.function

def training_step(x):

with tf.GradientTape() as g:

N="100"#@param[50,100,200]

ittiration =int(N)

for i in range(ittiration):

x=ca(x)

if flag:

loss = mse_loss(x[..., :4], tf.cast(target, tf.float32))

else:

loss = mse_loss(x[..., :4][...,3], tf.cast(target[...,3],

tf.float32))

params=ca.trainable_variables

grads=g.gradient(loss, params)

grads=[g/(tf.norm(g)+1e-8) for g in grads]

trainer.apply_gradients(zip(grads,params))

return loss,x

TRAINING_ITTIRATION="500"#@param[500,1000,3000,5000,10000]

for i in range(int(TRAINING_ITTIRATION)):

batch_idx=np.random.choice(len(pool),8, replace=True)

x0=pool[batch_idx]

x0[:1]=seed

loss,x=training_step(x0)

loss_log.append(loss.numpy())

if i%10==0:

print()

pl.plot(loss_log,'.',alpha=0.3)

pl.yscale('log')

pl.show()

print(i,loss.numpy(),flush=False)

Sample input csv file for the system

User interface

User interface after Training and visualization

